Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

ƼŸ´Ï¾Æ ³ª³ëÆ©ºê ±âÆÇÀÇ ±Ý ³ª³ëÆ©ºê Á¦Á¶ ¹× Ç×±Õ·Â Æò°¡

Titania nanotube template based synthesis of gold nanotubes and their antibacterial activity

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2018³â 45±Ç 1È£ p.35 ~ 44
¹®°æ¼÷, ¿À»óÈÆ, Á¤Âù±Ç, ¹èÁö¸í, ¿À½ÂÇÑ,
¼Ò¼Ó »ó¼¼Á¤º¸
¹®°æ¼÷ ( Mon Kyoung-Sook ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç
¿À»óÈÆ ( Oh Sang-Hoon ) - ÀüºÏ´ëÇб³ ´ëÇпø Ä¡ÀÇÇаú
Á¤Âù±Ç ( Jeoung Chan-Gwoun ) - ¿ø±¤´ëÇб³ ICTÀ¶Çձ׸°¿¡³ÊÁö¿¬±¸¿ø
¹èÁö¸í ( Bae Ji-Myung ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç
¿À½ÂÇÑ ( Oh Seung-Han ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç

Abstract

º» ¿¬±¸¿¡¼­´Â ƼŸ´Ï¾Æ ³ª³ëÆ©ºê ÃþÀ» ÅÛÇø´À¸·Î ÀÌ¿ëÇÏ¿© Àü±â¿µµ¿ ÁõÂø¹ýÀ¸·Î ±Ý ³ª³ëÆ©ºê¸¦ Á¦ÀÛÇÑ ÈÄ, ±Ý³ª³ëÆ©ºêÀÇ Ç¥¸é Ư¼ººÐ¼®°ú »ýü ÀûÇÕ¼º ¹× Ç×±ÕÈ¿°ú¸¦ Æò°¡ÇÏ°íÀÚ ÇÏ¿´´Ù. ±¸¿¬»ê¿° ȯ¿ø¹ý ¹× Àü±â¿µµ¿ ÁõÂø¹ýÀ» ÀÌ¿ëÇÏ¿© 4 nm¿Í 15 nmÀÇ ±Ý ³ª³ëÀÔÀÚ¸¦ ¾ç±Ø»êÈ­µÈ 100 nm ƼŸ´Ï¾Æ ³ª³ëÆ©ºê À§¿¡ ÁõÂø½ÃÄÑ 100 nm Á÷°æÀÇ ±Ý ³ª³ëÆ©ºê¸¦ Á¦ÀÛÇÏ¿´´Ù. UV-Vis ºÐ»ê ºÐ±¤ºÐ¼® °á°ú, 4 nm ¹× 15 nm ±Ý ³ª³ëÆ©ºêÀÇ ÁõÂø½Ã°£¿¡ µû¸¥ ÃÖ´ë ±¤Èí¼öµµ ÆÄÀåµéÀº 702~774 nm ¹× 753~760 nm ¹üÀ§¸¦ °¢°¢ Çü¼ºÇÏ¿´À¸¸ç, ÁõÂø½Ã°£¿¡ µû¸¥ ÃÖ´ë ±¤Èí¼öµµ ÆÄÀåÀÇ À̵¿ÀÌ °üÂûµÇ¾ú´Ù. FE-SEM °á°ú¿¡¼­´Â ƼŸ´Ï¾Æ ³ª³ëÆ©ºêÀÇ ÃÖ»óÃþ¿¡ °ñ°í·ç ÀûÃþµÈ ±Ý ³ª³ëÀÔÀÚ°¡ È®ÀεǾú°í, EDX °á°ú, 0.1~0.5% ±Ý ÇÔ·®À» °üÂûµÇ¾ú´Ù. MTT ¼¼Æ÷½ÃÇè °á°ú, ¹è¾ç 24½Ã°£, 48½Ã°£ ÈÄ ¸ðµç ½ÇÇ豺ÀÇ »ó´ë Èí±¤µµ°ªÀÌ 70%¸¦ ³Ñ¾î ¿ì¼öÇÑ »ýüÀûÇÕ¼ºÀ» ³ªÅ¸³»¾ú´Ù. ±Ù Àû¿Ü¼± ·¹ÀÌÀú ±¤À» ÀÌ¿ëÇÏ¿© ±Ý ³ª³ëÆ©ºêÀÇ ¼¼±Õ ºÎÂø ¹× ¼ºÀå¿¡ ¹ÌÄ¡´Â È¿°ú¸¦ º» °á°ú, ±Ý ³ª³ëÀÔÀÚÀÇ ÄÚÆÃÇÑ ½Ã°£¿¡ °ü°è¾øÀÌ ¸ðµÎ ¿ì¼öÇÑ Ç×±Õ´ÉÀ» ³ªÅ¸³»¾ú´Ù. µû¶ó¼­ ƼŸ´Ï¾Æ ³ª³ëÆ©ºê ÅÛÇø´À» ÀÌ¿ëÇÑ ±Ý ³ª³ëÆ©ºê ÄÚÆñâ¼úÀº ±ÙÀû¿Ü¼± ·¹ÀÌÀú¸¦ ÀÌ¿ëÇÑ ¿ø°ÝÁ¦¾î ¿Â¿­Ã³¸®°¡ °¡´ÉÇÑ Æ¼Å¸´½ ÀÓÇöõÆ® Ç¥¸éó¸® ±â¼ú·ÎÀÇ Àû¿ë°¡´É¼ºÀÌ ¿ì¼öÇÔÀ» È®ÀÎÇÏ¿´´Ù.

In this study, gold nanotubes were fabricated by electrophoretic deposition using a titania nanotube layer as a template, and then the surface characteristics, biocompatibility and antibacterial effect of gold nanotubes were evaluated. Gold nanotubes of 100 nm diameter were fabricated by depositing 4 nm and 15 nm gold nanoparticles on anodized 100 nm titania nanotubes by citrate reduction and electrophoretic deposition. As a result of the UV-Vis diffuse spectrophotometer, 4 nm and 15 nm gold nanotubes showed strong absorption at 702~774 nm and 753~760 nm, respectively. Also, the maximum absorption wavelength was shifted to the longer wavelength as the coating time of the gold nanoparticles increased. FE-SEM observation and EDX analysis resulted that 0.1~0.5 wt% gold nanoparticles uniformly were stacked on the top layer of titania nanotubes. As a result of MTT cell test, the relative absorbance value of all experimental groups after 24 hours and 48 hours of incubation exceeded 70% indicating excellent biocompatibility. The effect of the near infrared laser light on the adhesion and growth of gold nanotubes showed excellent antibacterial activity regardless of the coating time of gold nanoparticles. Therefore, it is confirmed that the gold nanotube coating technology based on the titania nanotube template is supposed to be highly applicable to a titanium implant surface treatment technology with the remote control thermal treatment of a near-infrared laser.

Å°¿öµå

±Ý ³ª³ëÆ©ºê; ±¸¿¬»ê ȯ¿ø¹ý; ƼŸ´Ï¾Æ ³ª³ëÆ©ºê; »ýüÀûÇÕ¼º; Ç×±Õ´É
Gold nanotubes; Citrate reduction; Electrophoretic deposition; Biocompatibility; antibacterial activity

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI